Synthesis, Characterisation and Corrosion Inhibition of Mild Steel by Butyltin(IV) 2-Acetylpyridine 4-Methyl-3-Thiosemicarbazone in HCl

نویسندگان

چکیده

Schiff base ligand, 2-acetylpyridine 4-methyl-3-thiosemicarbazone (Me-LH), and its organotin complex (BuSn(Me-LH)Cl2) were synthesized, characterized, subjected to corrosion inhibition study. The spectra crystal structure obtained revealed that the ligand is coordinated by pyridyl nitrogen, azomethine thiolate sulfur (IV) ion. Corrosion of synthesized compounds on mild steels in 1 M HCl solution at different concentrations tested using weight loss, Electrochemical Impedance Spectroscopy (EIS), potentiodynamic polarization, Scanning Electron Microscopy (SEM) adsorption analyses. results showed had a strong inhibitory effect comparison ligand. efficiency all techniques improved with an increase concentration inhibitor. Polarization analysis can be categorized as mixed-type inhibitors. Meanwhile, EIS study indicates inhibitor, resistance charge transfer increased. This resulted inhibitors development protective layer steel surface which was further confirmed SEM analysis. isotherm followed Langmuir model.
 HIGHLIGHTS
 
 efficient method inhibit rate acidic medium inhibitor
 electrochemical loss proved increases when inhibitor increased
 thiosemicarbazone potential low concentrations
 GRAPHICAL ABSTRACT

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrosion Inhibition of 5-Methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxyaldehyde on Mild Steel in 1.0 M HCl: Gravimetric Method and DFT Study.

The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of ther...

متن کامل

Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by 2-Hydropyrimidine-2-Thione Derivative

The corrosion inhibition potential and efficacy of 2-hydropyrimidine-2-thione derivative on mildsteel in 0.5 M sulfuric acid solution was investigated using electrochemical polarization and FTIRspectroscopic techniques. In addition, docking studies were carried out as theoretical investigationof adsorption inhibitor on iron surface. The results of polarization studies indicate...

متن کامل

The Inhibition of Mild Steel Corrosion in 1 N HCl by Imidazole Derivatives.

The inhibition effect of imidazole derivatives 4-methyl-2-propyl-1H-benzimidazole-6-carboxylic acid (MPBI) and 1,4'-Dimethyl-2'-propyl-1H,3'H-2,5'-dibenzimidazole (DPBI) against mild steel corrosion in 1 N HCl solutions were evaluated using conventional weight loss, potentiodynamic polarization, linear polarization and electrochemical impedance spectroscopy. The weight loss results showed that ...

متن کامل

Novel Corrosion Inhibitor for Mild Steel in HCl

Corrosion inhibitory effects of new synthesized compound namely 5,5'- ((1Z,1'Z)-(1,4-phenylenebis(methanylylidene))bis(azanylylidene))bis(1,3,4-thiadiazole-2-thiol) (PBB) on mild steel in 1.0 M HCl was investigated at different temperatures using open circuit potential (OCP), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Results showed that PBB inhibited m...

متن کامل

Corrosion Inhibition of Mild Steel in Acidic Solution by Apricot Gum as a Green Inhibitor

The inhibitive effect of apricot gum AG on mild steel in 0.5 M phosphoric acid solution was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy EIS, linear polarization resistance and electrochemical noise EN techniques. The inhibition efficiency increased with increasing AG concentration up to a certain value and decreased with increasing temperature. Polarizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in Sciences

سال: 2022

ISSN: ['2774-0226']

DOI: https://doi.org/10.48048/tis.2022.4615